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Reaction-controlled cooperative desorption in a one-dimensional lattice: A dynamical approach

F. Baras, F. Vikas, and G. Nicolis
Centre for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine, Code Postal 231,

B-1050 Brussels, Belgium
~Received 25 May 1999!

The spinlike dynamics of immobile reactants in a one-dimensional lattice is analyzed for two representative
systems involving cooperative desorption. An exact combinatorial approach is worked out. Its failure to
reproduce the results of microscopic simulations is shown to be associated with the lack of sufficiently strong
ergodic properties, as a result of which the final state depends strongly on the initial conditions. A dynamical
approach to the problem based on the Master equation description is subsequently developed, leading to full
agreement with the microscopic simulations.
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I. INTRODUCTION

Recently, there has been considerable interest in nonli
phenomena that take place in sets of low dimensionality.
unexpected outcome of these investigations has been th
such diverse systems as interacting spins, random walk
gregating particles, or chemical reactions, inhomogene
fluctuations may induce substantial deviations of the mac
scopic behavior from that predicted by the mean field~MF!
approach. A crossover from dimension-dependent beha
at low dimensions to universal MF behavior at some criti
dimension has also been identified and found to depend
both the characteristics of the lattice and the nature and
gree of nonlinearity of the dynamics.

So far, most of the literature on the effect of dimensio
ality on the dynamics of reactive systems has focused
diffusion-controlled reactions@1,2#. Clearly, if the space
where the reaction takes place is of low dimensionality,
number of neighbors and hence the effective mobility of
diffusing particles is low. As a result, some reactions m
take place with difficulty or be even forbidden. On the oth
hand, in high space dimensionality each individual parti
can reach and react with the other ones in the system
necessary prerequisite for the validity of MF. This is at t
origin of the deviations of the behavior of diffusion
controlled reactive systems from MF found in the recent
erature.

In a series of papers, two of the present authors and
workers have considered the opposite limit in which react
mobility can be neglected within the time scale of intere
thereby focusing specifically on the role of reactive dyna
ics in the overall behavior. Nontrivial effects of space dime
sionality have been found in this case as well, for the follo
ing types of kinetics:

~i! reactionsA1(n21)X
nX (n52 and 3! in a fully
covered regular or fractal lattice under closed system co
tions @3–5#;

~ii ! Schlögl reaction schemes under nonequilibrium~open
system! conditions known to give rise in the MF limit to
bifurcations toward multiple steady states@6,7#;

~iii ! a lattice generalization of the Lotka-Volterra mod
under nonequilibrium~open system! conditions@8#.
PRE 601063-651X/99/60~4!/3797~7!/$15.00
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In the first case and forn53, starting from a configura-
tion containing onlyX particles, the system stabilizes in 1
in a nonequilibrium, locally frozen asymptotic state in whic
the ratio ofA to X particles is quite different from the MF
ratio r 51. In the second case bifurcation was shown to
shifted or even suppressed altogether in low dimensions
nally, in the third case the sustained oscillations predicted
the MF limit are suppressed in 1D but persist in 2D.

The origin of the above deviations lies in the existence
a hard core not allowing the reacting particles to be in
same lattice node, and of short range interactions as a re
of which particles can react only with their immediate neig
bors. The number of these neighbors depends on the co
nation number of the lattice, and is small in low dimensio
As a result a reaction involving cooperative steps will pr
ceed with difficulty in low-dimensional systems. Now, rea
tive dynamics amounts to the change of identity of the s
cies involved. The progress of the reaction can therefore
monitored by a discrete, ‘‘color’’ or ‘‘spin’’-like variable
whose possible states equal the number of species invol
The color or spin propagation associated with the dynam
may, under certain conditions, behave analogously to di
sion although the origin of spatial propagation is quite d
ferent here than in the case of particle diffusion.

In the present paper we consider spinlike dynamics
immobile reactants in a 1D lattice in cases where the evo
tion does not involve a single ergodic set of states as in R
@3#, but depends strongly on the initial conditions. The p
ticular context in which this study will be implemented a
nonlinear irreversible reactions associated withcooperative
desorption,

A1A→
k

A1S ~cooperative partial desorption!, ~1a!

A1A→
k

S1S ~cooperative full desorption!, ~1b!

popularly referred to, respectively, as ‘‘coagulation’’ an
‘‘annihilation.’’ Here A denotes the reactive species andS
the empty lattice site. In the mean-field limit both reactio
3797 © 1999 The American Physical Society
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predict a trivial final state. Indeed, the rate equations ass
ated with Eqs.~1a! and ~1b! are, respectively,

dc

dt
52kc2, ~2a!

dc

dt
522kc2, ~2b!

whose unique steady-state solution iscs50, with a decay law
of the form

c~ t !5
c0

11c0kt
~3a!

for scheme~1a!, and

c~ t !5
c0

112c0kt
~3b!

for scheme~1b!, c0 being the initial condition. We shal
show that when these schemes are implemented on a
lattice one obtains a very different description domina
entirely by inhomogeneous fluctuations.

In Sec. II the steady-state coverage of the lattice byA
particles, as given by a combinatorial approach is evalua
exactly. In Sec. III a microscopic simulation of systems~1a!
and ~1b! is carried out, showing that the results of the co
binatorial approach are inadequate, notably because o
strong dependence on the initial coverage of the lattice
Secs. IV and V, a theoretical interpretation of these result
developed for the two schemes, based on a master equ
description of the evolution of the spinlike variables asso
ated with the occupation of the lattice. This leads to a h
archy of equations for the dynamics of clusters contain
contiguousA particles. An exact solution of this hierarchy
carried out from which the role of initial conditions is clear
brought out, in full agreement with the results of the micr
scopic simulation. Finally, the main conclusions are drawn
Sec. VI.

II. STEADY-STATE COVERAGE: COMBINATORIAL
APPROACH

We shall first calculate the time-independent probabi
distribution describing the coverageuA by A particles using
combinatorial arguments. Clearly, starting from a fully co
ered lattice, the time-independent state of the system wil
composed of sequences of free sitesS, separated by isolate
A particles. We hereafter consider the statistics of these
quences successively for the cases of cooperative partia
full desorption.

A. The cooperative partial desorption

Let n be the number of isolatedA particles left in a lattice
of size L, subjected to fixed boundary conditions. Starti
from the uniformA configuration with a vacant site at eac
border, a time-invariant configuration is characterized by
fact that there must be at least one free site between twA
particles. This restriction implies that at leastn21 sites of
the lattice cannot be occupied byA particles. The number o
ci-
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sites that can be filled byA particles is thusL2(n21)22.
The number of different ways to put thesen particles on
theseL2n21 allowed sites is given by

ML~n!5S L2n21
n D .

The maximum number ofA particles allowed for a lattice o
fixed sizeL must satisfy the equation

n5L2n21,

which gives nmax5(L21)/2. Of more interest is the mos
probable valuen̄L , obtained by maximizingML(n),

]

]n S ~L2n21!!

n! ~L22n21!! D50.

In the limit L→`, n→` (n/L finite! one may use the
Stirling approximation, yielding

uA5 lim
L→`

n̄L

L
5

52A5

10
50.2764. ~4!

This value practically coincides with the average number
A particles

^n&L5
(n50

(L21)/2nML~n!

(n50
(L21)/2ML~n!

,

normalized byL whose numerical evaluation yields

uA5
^n&L

L
50.2763

for a lattice of sizeL51001.

B. The cooperative full desorption

Starting again from the fully covered configuration, th
set of time-independent states is composed of sequence
the form

SSASSSSASSSSSS, ~5a!

S2AS2S2AS2S2S2 . ~5b!

We wish to find the numberML(n) of different ways of
putting n particlesA in a 1D lattice of sizeL under these
conditions. We have the following restrictions:

~A! If L is odd ~even!, n must be odd~even!.
~B! We assume fixed boundary conditions@S2 at the edges

of Eq. ~5b!#.
~C! The sequence~5a! can be rewritten in the form~5b!

with a characteristic lengthL85n1(L2n)/25(L1n)/2.
~D! Between twoA particles, there is at least oneS pair.

Thusn21 sites of the lattice~5b! cannot be occupied byA
particles.

In view of the above, the number of allowed sites for theA
particles is
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L82~n21!225
L2n

2
21,

andML(n) is now given by

ML~n!5S ~L222n!/2
n D .

The maximum number ofA particles allowed for a fixed size
L must satisfy the equation

n5
L222n

2
,

which givesnmax5(L22)/3. As for the most probable valu
n̄L , it is now given by

]

]n S @~L222n!/2#!

n! @~L2223n!/2#! D50.

Using again the Stirling formula one obtains in th
asymptotic limit

uA5 lim
L→`

n̄L

L
50.1770. ~6!

On the other hand, the average number ofA particles in a
chain of sizeL ~odd! is

^n&L5
(n50,odd

(L22)/3nML~n!

(n50,odd
(L22)/3ML~n!

.

The numerical evaluation for a sizeL5902 gives

uA5
^n&L

L
50.1769,

which is nearly undistinguishable from the above result~6!.

III. MICROSCOPIC SIMULATION

To derive the statistical properties of the asymptotic st
we perform Monte Carlo simulations on a 1D lattice co
posed ofL sites. The simulation algorithm, subsequently
ferred to as codeA, is summarized by the following steps

~1! An initial configuration containing a numbern of A
particles placed at random on theL sites is chosen, the initia
coverage beinguA(0)5n/L. The extreme sites are set v
cant to be consistent with the combinatorial analysis.

~2! At every Monte Carlo step, one lattice sitei is selected
at random.

~3! If the chosen lattice sitei and a randomly chose
nearest neighborj are occupied byA particles, then the re
action occurs with probabilityk. ~a! The A particle on sitei
is transformed intoS @reaction~1a!#. ~b! The twoA particles
desorb and the sitesi and j are vacated@reaction~1b!#.

~4! In all other cases the lattice remains unchanged
the algorithm restarts at step 2 above.

The lattice chosen is composed of 217 sites and each
simulation is performed over 23106 Monte Carlo steps. Fo
e
-
-

d

simplicity we setk51. Starting from a quasiuniform con
figuration inA ~all sites are initially occupied byA particles
except the two edges!, for both reactions~1a! and ~1b! the
simulation gives a final global coverage which is signi
cantly different from the predictions of the combinatori
analysis although the final configurations contain only is
latedA particles. As shown in Table I, for the partial desor
tion the simulation result is larger than the expected o
while it is the contrary for the full desorption. One ma
wonder if this discrepancy is related to the algorithm used
check the occupation of a selected pair. To explore this
construct a slightly different code~codeB) by changing step
3 @9#:

(38) If the chosen latticei is occupied byA, the two
nearest neighbors are checked in a random manner. If anA is
found in any of them, the reaction occurs and we proceed
before.
Using codeB, we note a shift of the simulation results b
the discrepancy still persist, especially for reaction~1b!. The
sensitivity of the results towards the numerical code isa
priori unexpected for such simple desorption schemes
suggests that these systems do not possess strong er
properties leading to a mixing of the available states.

For reaction~1a! we have also analyzed the asympto
behavior using a sequential algorithm~codeC) starting from
a quasiuniform configuration inA ~sites 1 andL are vacant!.
Steps 2 and 3 differ from the previous codeA in the follow-
ing way:

(29) At each Monte Carlo step, a new sitei is chosen
following the chain fromi 52 to i 5L21.

(39) One of the nearest neighborsj of the sitei is chosen
at random. If both sites are occupied byA, ~a! The sitei is
vacated~codeC1). ~b! The sitej is vacated~codeC2). ~c!
The sitei or the sitej is vacated at random~codeC3).

It is instructive to see how these different sequential co
perform on a small system of sizeL55. The only allowed
invariant states are

n50: SSSSS,

n51: SASSS SSASS SSSAS,

n52: SASAS.

The probability of occurrence ofn50, 1, and 2 is thus re-
spectively 1/5, 3/5, and 1/5. This leads to a theoretical m
coverage of 0.2. By performing 105 realizations starting from
the same initial configurationSAAAS, we obtain the statis-
tical results summarized in Table II with a measured cov
age of 0.3. We note that the statistical weights of the diff
ent configurations are highly dependent on the numer

TABLE I. Asymptotic global coverageuA : simulation results.

A1A→S1A A1A→S1S

Code A 0.3681a 0.3033b 0.1354a 0.1842b

Code B 0.3336a 0.2915b 0.1237a 0.1802b

Combinatorial 0.2764 0.1770

aStarting from an initial conditionuA(0);1.
bStarting from an initial conditionuA(0)50.5.
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code. This indicates that the 1D system is nonergodic in
space of available microscopic configurations.

For systems ofL;103, we have constructed the histo
gram of the global asymptotic coverage from 23103 realiza-
tions starting from the same initialA uniform state using the
codesA, B, and C2. As shown in Fig. 1 the simulation
results clearly do not overlap with the theoretical distrib
tion. We note also that the distributions obtained using
parallel codeB and sequential codeC2 are nearly indistin-
guishable but differ from the one constructed with codeA.

We have also analyzed the dependence of the glo
asymptotic coverage on the initial conditionuA(0) for both
desorption reactions. As indicated in Table I~large system!,
for an initial coverage of 0.5 we note an improvement of t
simulation results as compared to the combinatorial one
this case the initial condition is chosen as a random rep
tion of L/2 A particles on the lattice and containsA clusters
of various sizes separated by vacant sites. The chemica
namics will destroy these clusters to give a configurat
with only isolatedA particles. Nevertheless, the fact that t
state is initially mixed influences the observed asympto
coverage. In other words, the imposed initial disorder is
spontaneously recovered starting from a uniform state.
smaller lattices (L;103) the analysis of statistical propertie
reveals the same behavior. Figure 2 compare the histogr
obtained starting from uniform and half coverages when
ing codeA. When uA(0)50.5, the microscopic configura
tion is different from one realization to another but the d
tribution of final coverages shows the same shape as for
uniform case with a most probable value just shifted.

The results of the systematic study of the influence of
initial characteristics of the support are summarized in Fig

TABLE II. Statistics of available configurations for a system
sizeL55.

Code C1 Code C2 Code C3

SSSSS
SASSS 16.5% 6%
SSASS 16.6% 16.6% 25%
SSSAS 33.4% 16.8% 19%
SASAS 50% 50% 50%

FIG. 1. Asymptotic distributions of global coverage for the c
operative partial desorption. The solid line corresponds to the c
binatorial estimation. The histograms are generated by 53104 real-
izations starting from a uniformA configuration. The dashed line i
obtained using codeA, the dotted one with codeB, and the thin
curve with a sequential algorithm (C2).
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We note that this dependence is reminiscent of a desorp
isotherm. The curve presents a maximum in case~1b! and for
uA(0)50.5 while it decreases continuously for reaction~1a!.
The strong influence of initial conditions on the final cove
age further confirms the lack of ergodicity characterizi
these desorption mechanisms. In the next two sections
present a microscopic study that provides a theoret
framework for the unexpected numerical observations of
section.

IV. DYNAMICS OF THE COOPERATIVE PARTIAL
DESORPTION

A. Model and master equation

We considerL spinlike variabless i561 arranged on the
sites of a 1D chain and standing, respectively, for a site
cupied by anA particle (s51) and a vacant site (s
521). Starting from some arbitrary initial state, the evol
tion of the probability distributionP($s%,t) of the set vari-
ables$s%5(s1¯s j¯sL) with time is given by the Master
equation@10#

dP~$s%;t !

dt
52(

j
wj~$s%→$s8%,t !P~$s%;t !

1(
j

wj~$s8%→$s%,t !P~$s8%;t !, ~7!

-

FIG. 2. Asymptotic distributions of global coverage for the c
operative partial desorption~a! and full desorption~b!. The solid
line is the theoretical probability given by the combinatorial estim
tion. The histograms are constructed using codeA over 53104

realizations for a lattice of sizeL51001 in case~a! andL5902 in
case~b!. The dashed line corresponds to an initial uniform st
@uA(0)51# and the dotted one to a random configuration char
terized by the coverageuA(0)50.5.
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where$s8% denotes the configuration (s1¯2s j¯sL) and
wi($s%→$s8%,t) represents the transition probability p
unit time from the state$s% to the state$s8% at time t. It
therefore introduces in the analysis the microscopic lo
laws specific to the system.

The explicit form of the transition probability for th
model ~1a! is obtained by requiring that in a sitej the reac-
tion proceeds if sitej and one of its nearest neighbors s
lected at random are occupied by anA particle. This yields

wj~$s%→$s8%,t !5
k

8
~s j11!~s j 111s j 2112!. ~8!

This form corresponds to the numerical code A. Indeed, fo
triplet (s j 21 ,s j ,s j 11) in the state (1,1,21) the transition
probability for the sitej is given bywj5k/2. The factor 1/2
stands for the probability of choosing one of the near
neighbor sites. In contrast, in codeB, this triplet will evolve
to (1,21,21) with probability k. In what follows we will
absorb the ratek in the dimensionless time variablet5kt.

B. Dynamics of l clusters

Let Pl be the probability thatl connected sites are oc
cupied by homologousA particles. In the framework of ou
formalism, this quantity can be written as

Pl ~t!5 (
s1561

. . . (
s i561

(
s i 1l 11561

. . . (
sL561

3P@~s1 . . . s i 1151 . . .s i 1l 51 . . .sL!;t#.

Starting from Eqs.~7! and ~8!, one can easily derive th
evolution equation forPl ,

dPl ~t!

dt
5(

j
(

s j 561,j Þ i 11, . . . ,i 1l

3@2wj~$s%→$s8%,t!P~$s%;t!

1wj~$s8%→$s%,t!P~$s8%;t!#. ~9!

FIG. 3. Dependence of the global asymptotic covera
uA(t→`) on the initial state characterized byuA(0). Each bullet
represents the arithmetic mean value over 10 realizations for
partial desorption and each diamond for the full desorption. T
system size is 217. The solid line corresponds to Eq.~15b! and the
dotted one to Eq.~20! both in the long time limit.
l

-

a

t

By performing the change of variables j852s j in the sec-
ond term, we observe a cancellation of the two terms for
j except those belonging to the subseti 11,̄ i 1l . For all
sites of the subset, the second term of the right-hand sid
Eq. ~9! vanishes identically since the spin variables j is set
equal to one andwj ($s8%→$s%,t)50. We now evaluate the
remaining contributions.

For j 5 i 11, the first term reads

2 (
s i561

1

8
~s i 1111!~s i1s i 1212!

3PR~s i ,s i 1151¯s i 1l 51!

52PR~s i51,s i 1151¯s i 1l 51!

2
1

2
PR~s i521,s i 1151¯s i 1l 51!

where

PR~s i ,s i 1151¯s i 1l 51!5 (
s j 561,j Þ i ,i 11, . . . ,i 1l

P~$s%!

Since

PR~s i51,s i 1151¯s i 1k51!

1PR~s i521,s i 1151¯s i 1k51!5Pl ,

the above relation takes the form

2Pl 112
1

2
~Pl 2Pl 11!52

1

2
Pl 2

1

2
Pl 11 . ~10!

For j 5 i 12, the first term reduces to

2
1

8
~s i 1211!~s i 111s i 1312!PR~s i 1151¯s i 1l 51!

52Pl . ~11!

Actually, we have two contributions of the type~10! cor-
responding to the edges of the clusterj 5 i 11 and j 5 i 1l
andl 22 contributions of the type~11! corresponding to the
sites j 5 i 12,̄ i 1l 21. Finally, Eq.~9! reduces to

dPl ~t!

dt
52~ l 22!Pl ~t!2Pl 11~t!2Pl ~t!

52~ l 21!Pl ~t!2Pl 11~t!, ~12!

which was previously obtained in an heuristic manner
Majumdar and Privman@11#. Since the initial configuration
of the lattice is randomly filled with a given coveragep or,
equivalently, with a given occupation probability per site, t
initial probability of finding anl cluster is given by

Pl ~0!5pl . ~13!

As shown in Ref.@11#, a simple way to solve Eq.~12! is to
use the ansatz

Pl ~t!5c~t!@s~t!# l 21, ~14!

e

he
e
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with s(0)5p andc(0)5p. Indeed, the solution~14! is pos-
sible provided

ds

dt
52s,

dc

dt
52sc,

yielding

s~t!5p exp~2t!, ~15a!

c~t!5p exp@2p~12e2t!#. ~15b!

We notice thatP1(t)5c(t) decreases in time but remain
finite ast→`. The quantityP1,̀ corresponds to the globa
asymptotic coverage of isolatedA particles and is directly
monitored in the simulations. An interesting feature is t
explicit nonlinear dependence of the surviving reactant c
erage on the initial density, even in the asymptotic limit,

P1,̀ 5e2150.368, p51

P1,̀ 5
1

2
e21/250.303, p51/2.

As shown in Fig. 3 and Table II, the dependence in the ini
density is in full agreement with the results of the micr
scopic simulations. All other probabilitiesPl .1 vanish as-
ymptotically, meaning that all clusters containing more th
one particle disappear sooner or later from the system. T
is also confirmed by the simulations. It is worth noting th
truncation of the infinite hierarchy~12! at a given order pro-
duces a formal expansion of the exact expressionPl ,` in
powers ofp, whose convergence is ensured only in the dil
limit.

V. DYNAMICS FOR THE COOPERATIVE FULL
DESORPTION

A. Model and master equation

As previously, we considerL spinlike variabless i561
arranged on the sites of a 1D chain. Starting from so
arbitrary initial state, the evolution of the probability distr
bution P($s%;t) of the set variable $s%
5(s1¯s j ,s j 11¯sL) with time is given by the Maste
equation ~7!, where $s8%5(s1 ,¯ ,2s j ,2s j 11 ,¯ ,sL).
In other words, the main difference from the previous cas
that both sites are affected by the reaction@12#. The transi-
tion probability now takes the form

wj~$s%→$s8%,t !5
k1

4
~s i11!~s i 1111!. ~16!

As before, the ratek will be absorbed in the adimensionn
time t5kt.
e
-

l

n
is
t

e

e

is

B. Dynamics of l clusters

The definition of the reduced probabilityPl and its evo-
lution equation~9! still hold for this reaction scheme. As in
the preceding case, only the first term of Eq.~9! gives a
nonvanishing contribution.

For j 5 i , the contribution reads

2 (
s i561

1

4
~s i11!~s i 1111!

3PR@~s i ,s i 1151 . . .s i 1l 51!;t#

52
1

2 (
s i561

~11s i !PR@~s i ,s i 1151 . . .s i 1l 51!;t#

52Pl 11~ t !. ~17!

For j 5 i 11, we have

2
1

4 (
s i561

~s i 1111!~s i 1211!

3PR@~s i ,s i 1151 . . .s i 1l 51!;t#

52 (
s i561

PR@~s i ,s i 1151 . . .s i 1l 51!;t#

52Pl ~ t !. ~18!

Here, we have two contributions of the type~17! corre-
sponding to the reaction between sites (i ,i 11) and (i 1l ,i
1l 11) andl 21 contributions of type~18! corresponding
to the reactions between sites (i 11,i 12)¯( i 1l 21,i
1l ). The evolution equation reduces then to

dPl ~ t !

dt
52~ l 21!Pl ~ t !22Pl 11~ t !. ~19!

This equation can be solved using the same method a
Sec. IV. The solution for single particles is

P1~t!5p exp@22p~12e2t!#, ~20!

leading to survival expectancies

P1,̀ 5e2250.135, p51

P1,̀ 5
1

2
e2150.184, p51/2.

These results are confirmed by the simulations~see Table II
and Fig. 3!.

VI. CONCLUSIONS

We have identified a mechanism of failure of MF descr
tion in low-dimensional systems, associated with the lack
ergodicity of the invariant state. More specifically, the i
variant probability is not defined on a single ergodic set
states, but can be decomposed into a large~exponentially
growing with size! number of states, each of which remai
invariant under the dynamics. The relative weight of each
these configurations depends on the initial condition, a
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thus explains the strong dependence of the results of
analysis on the initial coverage of the lattice.

Cooperative desorption arises in many heterogene
catalysis-related problems, whereA may stand for the reac
tive, atomic form of an otherwise practically inert substan
A2 ~e.g., atomic nitrogen N versus N2 in the NO/H2 reaction
on Pt!. In this respect, therefore, the results reported in t
paper are typical of a whole class of systems. On the o
hand, they are limited by our simplifying assumption of t
reactant being immobile. Incorporating mobility should,
principle, allow for anA particle to come eventually to th
immediate neighborhood of anotherA particle, even if ini-
tially they were both surrounded by empty sites. Our sche
can be adapted to allow for this possibility by noting that t
transition $s1 ,¯ ,s j ,s j 11 ,¯ ,sL%→$s1 ,¯ ,2s j ,
2s j 11 ,¯ ,sL% ~Sec. V! includes the possibility (1,21)
→(21,1) and (21,1)→(1,21). These are precisely hap
pening in diffusion to the right@(1,21)→(21,1)# and to
the left @(21,1)→(1,21)#. It would certainly be worth see
ing whether this suffices to establish ergodicity in one
mension.
l
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e
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Future work in this area should also aim at allowing f
more than one reactive species in the lattice. Taking also
account the empty sites, this would lead to a problem
which each lattice point can be in at least three poss
states. Such ‘‘spin one,’’ or higher problems, have recen
attracted attention in the literature@2,13# and are certainly
worth tackling from the standpoint of the Master equati
formalism.
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